Engineering Statistics IES 302

Dr. Prapun Suksompong
prapun@siit.tu.ac.th
Introduction

Office Hours:
BKD 3601-7
Wednesday 15:30-16:30
Friday 9:30-10:30

Course Organization

- Course Website: http://www2.siit.tu.ac.th/prapun/IES302/

- Lectures:
- Wednesday 13:30-15:20 BKD 3507
- Friday 10:40-12:30 BKD 3507
- Textbook:
- Applied Statistics and Probability for Engineers
- By Douglas C. Montgomery and George C. Runger
- 5th Edition
- There is a Student Companion Site.

Getting Info About This Course

- The syllabus contains tentative information.
- I will announce in class and on the web site if there is any change.
- You are responsible for making sure that you obtain this information.
- Come to classes on time and listen carefully for announcement.

Course Web Site

- Please check the course website regularly.
- Announcements
- References
- Handouts / Slides
- Calendar
- Exams
- HW due dates

www2.siit.tu.ac.th/prapun/IES302/

Course Website: Notes \& Slides

- PDF Notes will be posted before the corresponding lectures.
- Hard copies can also be purchased from the copy center.
- In lectures...
- PDF Notes will be highlighted and updated with examples / comments.
- Some lectures may use slides.
- The slides and updated notes will be posted after the corresponding lectures.
- I also frequently use Microsoft OneNote on my tablet instead of the whiteboard. The files will be exported as pdf and posted after the corresponding lectures.
- Remind me the day after the lecture if the notes/slides from the day before are still not posted on the web.

Course Outline

- Probability
- Random variables
- Discrete random variables
- Multiple random variables

Probability

- Continuous random variables
- MIDTERM: 24 Feb 2012 TIME 09:00-12:00
- Descriptive Statistics
- Random Sampling
- Sampling Distributions

Statistics

- Confidence Interval
- Tests of Hypotheses
- Simple Linear Regression
- FINAL: 10 Apr 2012 TIME 13:30-16:30

More Textbooks (for CS)

ARNOLD Q. Alles

Me ?

- Ph.D. from Cornell University, USA
- In Electrical and Computer Engineering
- Minor: Mathematics (Probability Theory)
- Ph.D. Research: Neuro-Information Theory
- Modeling and analyzing neurons in human brain from communication engineering perspective.
- Current Research: Wireless Communication
- Mobile Communications, WiFi (802.11)

- Best Teaching Award, 2009, SIIT

prapun.com

"I would found an institution where any person

On the Ithaca campus alone nearly 20,000 stulents (13,600 undergrad $+6,000 \mathrm{grad}$) representing every state and 120 countries cheoseffom among 4,000 courses in 11 undergraduate, graduate, and professional

Engineering Statistics IES 302

Dr. Prapun Suksompong prapun@siit.tu.ac.th Part I: Probability

Office Hours:
BKD 3601-7
Wednesday 15:30-16:30
Friday $\quad 9: 30-10: 30$
"Les questions les plus importantes de la vie ne sont en effet, pour la plupart, que des problèmes de probabilité."

"The most important questions of

 life are, for the most part, really only problems of probability."THEORIE
analytique
DES PROBABILITES;
Paa M. LE COMTE Laplace,

Pierre Simon Laplace (1749-1827)

"On voit, par cet Essai, que la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul; elle fait apprécier avec exactitude ce que les esprits justes sentent par une sorte d'instinct, sans qu'ils puissent souvent s'en rendre compte."
"One seses, from this Essay, that the theory of probabilities is basically just common sense reduced to calculus; it enables us to appreciate with exactess that which accurate minds feel with a sort of instinct, often without being able to account for it."

THEORIE
analytique
DES PROBABILITES;
Paa M. LE COMTE LAPlace,

Pierre Simon Laplace (1749-1827)

The Drunkard's Walk

- The Drunkard's Walk: How Randomness Rules Our Lives
- By Leonard Mlodinow
- Deals with randomness and people's inability to take it into account in their daily lives.
- A bestseller, and a "NY Times notable book of the year"
- Named "one of the 10 best science books of 2008" on Amazon.com.

DOunkard's Walk

How Ra@domness Rules Our Lives

- "A wonderfully readable guide to
how the laws of randomness affect our
STEPHEN HAWKING
A BRIEF HISTORY OF TIME

Leonard Mlodinow

- Euclid's Window: the Story of Geometry from Parallel Lines to Hyperspace
- Feynman's Rainbow: a Search for Beauty in Physics and in Life
- A Briefer History ofTime
- with Stephen Hawking

A BRIEFER
HISTORY
OF TIME

- an international best-seller that has appeared in 25 languages.
- The Drunkard's Walk: How Randomness Rules our Lives
- Apart from books on popular science, he also has been a screenwriter for television series, including Star Trek: The Next Generation and MacGyver.

Watch Mlodinow's talk

- Delivered to Google employees
- About his book ("The Drunkard's Walk")

- http://www.youtube.com/watch?v=F0sLuRsu1Do

The Seven Card Hustle

- Take five red cards and two black cards from a pack.
- Ask your friend to shuffle them and then, without looking at the faces, lay them out in a row.

- Bet that they can't turn over three red cards.
- Explain how the bet is in their favor.
- The first draw is 5 to 2 (five red cards and two black cards) in their favor.
- The second draw is 4 to 2 (or 2 to 1 if you like) because there will be four red cards and two black cards left.
- The last draw is still in their favor by 3 to 2 (three reds and two blacks).
- The game seems heavily in their favor, butYOU, are willing to offer them even money that they can't do it!

The Seven Card Hustle

- Take five red cards and two black cards from a pack.
- Ask your friend to shuffle them and then, without looking at the faces, lay them out in a row.

- Bet that they can't turn over three red cards.
- Explain how the bet is in their favor.
- The game seems heavily in their favor, butYOU, are willing to offer them even money that they can't do it!

The Seven Card Hustle: Sol

The correct probability that they can do it is

$$
\frac{\not p \times 4 \times 3}{7 \times \dot{6} \times \not p^{2}}=\frac{2}{7}
$$

Alternatively, $\frac{\binom{5}{3}}{\binom{7}{3}}=\frac{5!}{3!2!} \times \frac{3!4!}{7!}$

$$
=5 \times 4 \times 3 \times \frac{1}{7 \times 6 \times 5}
$$

$$
=\frac{2}{7}
$$

Monty Hall Problem (MHP): Origin

- Problem, paradox, illusion
- Loosely based on the American television game show Let's Make a Deal. (Thai CH7 version: ประตูดวง.)
- The name comes from the show's original host, Monty Hall.
- One of the most interesting mathematical brain teasers of recent times.

Monty Hall Problem: Math Version

- Originally posed in a letter by Steve Selvin to the American Statistician in 1975.
- A well-known statement of the problem was published in Marilyn vos Savant's "Ask Marilyn" column in Parade magazine in 1990:

"Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?"

Marilyn vos Savant

- Vos Savant was listed in each edition of the Guinness Book of World Records from 1986 to 1989 as having the "Highest IQ."
- Since 1986 she has written "Ask Marilyn"
- Sunday column in Parade magazine
- Solve puzzles and answer questions from readers

MHP: Step 0

- There are three closed doors.
- They look identical.

MHP: Step 0

- Behind one of the doors is the star prize - a car.
- The car is initially equally likely to be behind each door.
- Behind each of the other two doors is just a goat.

MHP: Step 1

- Obviously we want to win the car, but do not know which door conceals the car.
- We are asked to choose a door.
- That door remains closed for the time being.
"Pick one of these doors"

MHP: Step 2

- The host of the show (Monty Hall), who knows what is behind the doors, now opens a door different from our initial choice.
- He carefully picks the door that conceals a goat.
- We stipulate that if Monty has a choice of doors to open, then he chooses randomly from among his options.

MHP: Step 3

- Monty now gives us the options of either

1. sticking with our original choice or

2. switching to the one other unopened door.

- After making our decision, we win whatever is behind our door.

Monty Hall Problem

Assuming that our goal is to maximize our chances of winning the car, what decision should we make?

- Will you do better by Sticking with your first choice, or by SWitching to the other remaining door?
- Make no difference?

Let's play!

Interactive Monty Hall

- http:/ / montyhallgame.shawnolson.net/
- http:/ /www.shodor.org/interactivate/activities/SimpleMontyHall/
- http:/ / www.math.uah.edu/stat/applets/MontyHallGame.xhtml
- http:/ / scratch.mit.edu/projects/nadja/484178
- http://www.math.ucsd.edu/~crypto/Monty/monty.html

Interactive Monty Hall

The New York Times's Version

Back to the boring administrative stuff!

Grading System

- Coursework will be weighted as follows:
Assignments 5\%
Class Participation and Quizzes 15\%
Midterm Examination 40\%-24 Feb 2012 TIME 09:00-12:00Final Examination (comprehensive) 40\%
-10 Apr 2012 TIME 13:30-16:30
- Mark your calendars now!
- Late HW submission will be rejected.

Calendar

M	T	W	R	F
9-Jan-12	10-Jan-12	11-Jan-12	12-Jan-12	13-Jan-12
16-Jan-12	17-Jan-12	18-Jan-12	19-Jan-12	20-Jan-12
23-Jan-12	24-Jan-12	25-Jan-12	26-Jan-12	27-Jan-12
30-Jan-12	31-Jan-12	1-Feb-12	2-Feb-12	3-Feb-12
6-Feb-12	7-Feb-12	8-Feb-12	9-Feb-12	10-Feb-12
13-Feb-12	14-Feb-12	15-Feb-12	16-Feb-12	17-Feb-12
20-Feb-12	21-Feb-12	22-Feb-12	23-Feb-12	24-Feb-12
27-Feb-12	28-Feb-12	29-Feb-12	1-Mar-12	2-Mar-12
5-Mar-12	6-Mar-12	7-Mar-12	8-Mar-12	9-Mar-12
12-Mar-12	13-Mar-12	14-Mar-12	15-Mar-12	16-Mar-12
19-Mar-12	20-Mar-12	21-Mar-12	22-Mar-12	23-Mar-12
26-Mar-12	27-Mar-12	28-Mar-12	29-Mar-12	30-Mar-12
2-Apr-12	3-Apr-12	4-Apr-12	5-Apr-12	6-Apr-12
9-Apr-12	10-Apr-12	11-Apr-12	12-Apr-12	13-Apr-12

Calendar (Google)

Class Participation

- NOT the same as class attendance!
- If you come only to receive, you will fall asleep.
- Do not simply sit quietly in the class.
- Need interaction between lecturer and students.
- Ask question when there is something that you don't understand.
- Don't be shy!
- It is very likely that your friends don't understand it as well.
- If you already understand what I'm presenting, SHOW ME!
- Point out the errors/typos.
- I will raise many issues/questions in class. Try to comment on them.

Class Participation (2)

- Record what you have done.
- Submitted before the midterm and before the final.

Sirindhorn International Institute of Technology
Thammasat University at Rangsit
School of Information, Computer and Communication Technology

ECS 455: Self-Evaluation

Instructions

1. The class participation score for this dass is judged from how much you actively participate in the clazs
discussion both inside and outside of the classroom.
2. Pleaze honestly answer the following questions. Pleaze provide as much information as possible.

Quesions

1. How many times have you been absent from the class? Are there any specific reason(s)? Please explain.
2. How many times have you been late (>3 mins) for the class? Are there any specific reason(s)? Please explain.
3. How many times have you left the class early (>3 mins)? Are there any specific reason(s)? Please explain.
4. How many times have you participated (provided comments, asked questions, answered questions, etc) in the lectures? Be specific. Provide some short description for each event. (You may put this on another sheet of paper.)
```
17/06/2010: I asked question for the example of current source [op-amp].
24/06/2010: I answered for the Example 2.2.7. that's 1|2\Omega and series with 5\Omega
    But it', wrong. The correct answer is "There's no series in that circuit:.
01/O/2010: I asked question "Is participate include with ask question after class".
    Answer: Yes
08/07/2010 : I asked about Linear equation"Why f(x)=3x+1 is not a linear equation
    eventually it is }y=mx+
    Answer: Because it's not satisfy }S(x)+k(s)x\mathrm{ and }s(\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{})=S(\mp@subsup{x}{1}{})+s(\mp@subsup{x}{2}{}
15/07/2010: I asked teacher to give an example of supermesh.
    Ansmer: "We can use only supernode to solve the problems in this class.
        You can find more in the textbook for supermesh".
29/07/2010: I told teacher that ne don't have class in static toiday so we can
    move this class instead
    I asked :Is the integrator and diffentiator op-amp circuit is the same as in
        the calculator function" "No for the op-amp it's amaby and for
        calculator is digital."
19/08/2010: I answered 京 }\operatorname{lin}0=\operatorname{cos}0,\frac{d}{dt}\operatorname{cos}0=-\operatorname{sin}0
```


Policy

- We will start the class on time and will finish on time.
- Raise your hand and tell me immediately if I go over the time limit.
- Does NOT mean that I will leave the room immediately after lecture.
- I will stay and answer questions.
- Mobile phones must be turned off or set in silent mode.
- We may have some pop quizzes (without prior warning or announcement) and in-class activities.
- Attendance and pop quizzes will be taken/given irregularly and randomly.
- Cheating will not be tolerated.

Policy (con't)

- Feel free to stop me when I talk too fast or too slow.
- I will surely make some mistakes in lectures / HWs / exams.
- Some amount of class participation scores will be reserved to reward the first student who inform me about each of these mistakes.
- Points on quizzes / exercises / exams are generally based on your entire solution, not your final answer.
- You can get full credit even when you have the wrong final answer.
- You may get zero even when you write down a right answer without justification.

Help and Office Hours

- Get some help!
- Do not wait until the final exam time or after the grade is out.
- Right after lecture is always a good time to ask question.
- Office Hours (BKD-3601)
- Time:
- Wednesday: 15:30-16:30 (right after class)
- Friday: 9:30-10:30 (right before class)
- Appointment can be made.
- Tutorial session can be arranged.
- Feel free to come to my office and chat!
- Don't be shy.

Warning

- This class is difficult.
- Keep up with the lectures.
- Make sure that you understand the concepts presented in the lecture before you go home.
- I will evaluate your understanding of the course regularly through
- In class problems/activities
- Quizzes
- Exams

Tips

- Almost everything including what I have written on my tablet will be saved and posted on web soon after class.
- No need to take detailed lecture notes (if you don't want to).
- Put all of your energy into understanding the material.
- Of course, there is always someone (in the class) who will take good notes anyway and you can (potentially) borrow or make a copy of the notes from them.
- Have fun with the materials presented in class.

Remarks

- Get as much legitimate help as you can
- Participate actively in class and outside of class
- Record what you have done.
- If you feel that the class is very easy, you might overlook something.
- If you feel that the class is very difficult, you are probably not the only one who feel that way.
- Don't give up. Chat with me.
- It takes me a long time to feel comfortable with these materials; yet, I still make mistakes.
- My notation can be different from the textbook.
- Every notation has some advantages and disadvantages.

Monty Hall Problem: a first revisit

Assuming that our goal is to maximize our chances of winning the car, what decision should we make?

- Will you do better by Sticking with your first choice, or by SWitching to the other remaining door?
- Make no difference?

Monty Hall Problem: vos Savant's Answer
"You double your chances of winning by switching doors."

Monty Hall Problem: Controversy

- Approximately 10,000 readers,
- including nearly 1,000 with PhDs
- (many of them math professors),
- wrote to the magazine
- claiming the published solution was wrong.
- "You blew it," wrote a mathematician from George Mason University.
- From Dickinson State University came this: "I am in shock that after being corrected by at least three mathematicians, you still do not see your mistake."

Controversy (2)

- From Georgetown: "How many irate mathematicians are needed to change your mind?"
- And someone from the U.S. Army Research Institute remarked, "If all those Ph.D.s are wrong the country would be in serious trouble."
- When told of this, Paul Erdos, one of the leading mathematicians of the 20th century, said, "That's impossible."
- Then, when presented with a formal mathematical proof of the correct answer, he still didn't believe it and grew angry.

Let's learn some concepts so that we can analyze interesting examples!

Part I. 1 Section 1-4

IES302 2011/1 Part I. 1 Dr.Prapun

1 Probability and You

Whether you like it or not, probabilities rule your life. If you have ever tried to make a living as a gambler, you are painfully aware of this, but even those of us with more mundane life stories are constantly affected by these little numbers.

Example 1.1. Some examples from daily life where probability calculations are involved are the determination of insurance premiums, the introduction of new medications on the market, opinion polls, weather forecasts, and DNA evidence in courts. Probabilities also rule who you are. Did daddy pass you the X or the Y chromosome? Did you inherit grandma's big nose?

Meanwhile, in everyday life, many of us use probabilities in our language and say things like "I'm 99% certain" or "There is a one-in-a-million chance" or, when something unusual happens, ask the rhetorical question "What are the odds?". [15, p 1]

